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Sheath folds as discriminators of bulk strain type
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Abstract

Nested elliptical closures defining ‘‘eye-folds’’ represent classic ( yez) cross sections through highly curvilinear sheath folds generated during
intense ductile deformation in metamorphic rocks. Systematic analysis of 1425 such eye-folds based on our own field observations and examples
from the published literature reveals distinct and consistent differences in ellipticites measured from the outer- (Ryz) to the inner-most (Ry0z0)
elliptical ‘‘rings’’ of individual sheaths. The variation in overall aspect ratios from outer to inner rings is defined as R0 (where R0 ¼ Ryz/Ry0z0)
and may display a relative increase or decrease in ellipticity to define ‘cats-eye’ (R0 < 1) or ‘bulls-eye’ (R0 > 1) fold patterns respectively. Layer
thicknesses may also be measured along the y axis (parallel to the axial surface) (ty) and at 90 � to this along the z axis (tz) to define the ratio of
Tyz. Sheath folds generated during broadly simple shear deformation (k y 1) display (mean) Ryz 4.61, Tyz 3.31 and cats-eye-folds (R0 0.69).
Sheath folds generated during general shear also display cats-eye-folds with identical mean R0 0.69 values, but greater thickness variations
and elliptical ratios (Tyz 4.35, Ryz 5.76). Thus, within both simple- and general shear-dominated deformations, the overall variation in layer thick-
ness (Tyz) and ellipticity of eye-folds (Ryz) increases with increasing deformation and a greater component of pure shear, whilst the R0 value
remains constant and reflects original fold patterns. Sheath folds formed during constrictional (k> 1) deformation display markedly lower aspect
ratios (Ryz 2.42) and thickness variations (Tyz 2.94), together with distinctive bulls-eye-folds (R0 1.23). These empirical relationships suggest
fundamental and universal constraints on curvilinear fold generation across this broad spectrum of deformation types, and allow sheath folds
to act as both effective (>95% consistent) and robust discriminators of bulk strain type.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The development in high-strain zones of curvilinear folds
was recognised in the 1960s (e.g. Voll, 1960; Carey, 1962;
Nicholson, 1963; Dalziel and Bailey, 1968; Dearman, 1969) al-
though the descriptive term sheath fold was only more recently
introduced into the literature (Carreras et al., 1977; Quinquis
et al., 1978; Minigh, 1979). Sheath folds may most simply be
defined as folds in which the hinge-line displays >90 � of cur-
vature when traced along its length (Ramsay and Huber, 1987),

* Corresponding author.

E-mail addresses: gia@st-andrews.ac.uk (G.I. Alsop), R.E.Holdsworth@

durham.ac.uk (R.E. Holdsworth).
0191-8141/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jsg.2006.05.005
and are now typically considered to reflect progressive and
intense deformation (see Alsop and Holdsworth, 2004a,b).
Most sheath folds are classically thought to form by the
sequential rotation of fold hinges that initiate at high angles
to shear during progressive non-coaxial deformation (Cobbold
and Quinquis, 1980). Gentle curvilinearity of the initial fold
hinge is therefore accentuated during subsequent shearing
to create highly curvilinear sheath folds (e.g. Cobbold and
Quinquis, 1980; Ramsay, 1980).

Sheath folds can be described as containing an x axis along the
length of the tube or tongue, whilst cross sections normal to the x
axis display elliptical geometries defining the intermediate ( y)
and short (z) axes (Fig. 1). Such elliptical sections or nested rings
define eye-folds (also known as ‘‘eye-structures’’ or ‘‘closed
folds’’ (Ramsay, 1962; Nicholson, 1963; Mukhopadhyay and
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Sengupta, 1979). Thus, eye-folds are classically considered to
represent two dimensional ( yez) cross sections cutting directly
across the length (x) of the sheath fold (Fig. 1). It has long been
recognised that these eye-folds defined by layering may display
yez aspect ratios (Ryz) that vary between circular (1:1) and highly
elliptical (1:25) (Williams and Zwart, 1977). Larger Ryz aspect ra-
tios become increasingly difficult to identify owing to attenuation
and transposition of fold limbs, and the present study is therefore
largely based on analyses of sheath folds displaying Ryz< 20.

The x, y and z geometric axes of sheath folds are generally
considered to lie sub-parallel with the X, Y and Z axes of the
finite strain ellipsoid (e.g. Quinquis et al., 1978; Minigh,
1979). The x axis of the sheath fold is thus broadly parallel
to the mineral elongation lineation (X ), which marks the trans-
port direction during intense non-coaxial deformation, whilst
the sheath y axis lies on the plane of the foliation (XeY sur-
face) with the z axis forming the normal to that plane. Mineral
lineations defining the X-direction and associated with the de-
velopment of sheath folds may also be marked by an anisot-
ropy of magnetic susceptibility (AMS) fabric that aids
further in the interpretation of structural relationships (e.g.
Lefort et al., 2001).

Despite the increasing recognition that shear zones may
display a variety of strain types that deviate significantly
from simple shear (e.g. Alsop and Holdsworth, 2004c and ref-
erences therein), the concept of sheath generation is still very
much based on progressive deformation marked by simple
shear (e.g. Cobbold and Quinquis, 1980). In order to investi-
gate and test the role of different strain types on the geometry
and evolution of sheath folds, we have drawn on data from
a wide range of deformation zones marked by simple shear,
and general shear in which a pure shear component has also
operated. Sheaths from settings that may deviate significantly
from plane strain (k¼ 1) deformation such as constrictional
shear zones have also been analysed for comparison. Our anal-
yses of natural sheath folds are based on our own observations

Fig. 1. Schematic sketch illustrating the x, y and z axes of a sheath fold to-

gether with the inter-limb angle (a) and apical angle (b) of the curvilinear

fold hinge-line. YeZ orientated cross sections across the sheath fold result

in eye-fold geometries. Elliptical ratios of the outer-most ring (Ryz) and in-

ner-most ring (Ry0z0) are also given. The thickness of any individual layer

may be measured along the y axis (ty) and at 90 � to this along the z axis

(tz) to provide a ratio (Tyz) of layer thickening/thinning. See text for discussion.
and data, together with an extensive review of the sheath fold
literature published largely during the past 40 years. This in-
vestigation suggests that highly curvilinear folds and sheath
folds are far more common than previously realised with
1425 elliptical sections being analysed from a sample of 501
individual sheath folds in this study.

Recent debate has centred on whether the shape of sheath
folds and associated eye-folds may reflect variable strain in-
tensity associated with non-coaxial deformation (e.g. Go-
scombe, 1991, p. 314). In addition, it has been claimed (Ez,
2000) that most sheath folds do not display a great enough var-
iation in the thickness of layering to be generated by simple
shear alone, and that a constrictional component of deforma-
tion may be more appropriate in such cases. Despite these gen-
eral associations and inferences, this study represents the first
to analyse natural examples of sheath fold geometries gener-
ated during broadly simple shear, general shear (where an ad-
ditional component of pure shear has operated with simple
shear) and constrictional deformation. The aim of this work
is therefore to record and compare sheath geometries devel-
oped within these different tectonic settings by establishing
a new descriptive framework based on easily recorded param-
eters. This may allow sheath folds to act as effective discrim-
inators of strain type.

In the present paper, we restrict our analysis to sheath folds
developed during intense ductile deformation within metamor-
phic rocks, but it is important to note that such structures are
also known to develop during intense deformation in a wide
variety of other geological settings, e.g. slumps, sub-glacial
deformation, flow of salt and magmas.

2. A new framework for describing eye-folds

Although eye-folds marked by closed elliptical patterns
have obviously long been recognised and recorded (e.g.
Dale, 1921), no rigorous framework exists for the detailed
analysis of such folds. The elliptical ratio (Ryz) of any sheath
fold will obviously vary as a consequence of the length of
the intermediate ( y) axis, which is controlled by the degree
of hinge-line curvature (the apical angle, b), coupled with
the dimension of the short (z) axis which reflects the inter-
limb angle (a) (Fig. 1). The short (z) axis of the ellipse thus
marks the direction of greatest curvature, while the intermedi-
ate ( y) axis reflects the direction of least curvature for any
given curvi-planar surface (see Lisle, 2003). These Ryz ellipti-
cal cross sections are normal to the long (x) axis of the sheath
fold, which is typically more difficult to measure in most nat-
ural exposures. The thickness of any individual layer may be
measured along the y axis within the axial (xey) surface of
the sheath fold (ty), and at 90 � to this along the z axis (tz)
(Fig. 1). The ratio Tyz (where Tyz¼ ty/tz) will therefore reflect
the relative thickening or thinning of layers from the limbs to
the hinge of the sheath fold.

Mies (1993, p. 989) suggests that yez sections of sheath
folds should be measured at the mid-point of the length (x)
of the sheath. However, in practice, this theoretical measure-
ment is impossible to achieve without complete excavation



1590 G.I. Alsop, R.E. Holdsworth / Journal of Structural Geology 28 (2006) 1588e1606
of exposures to extract 3-D sheath surfaces. However, the re-
sults presented below suggest that as long as sectioning avoids
the nose and base of the outer-fold, and lies orthogonal to the x
axis of the sheath, then reliable and consistent results are ob-
tained. This view is supported by our analysis of sheath folds
in three dimensions, together with the serial sectioning of
sheaths by several authors (e.g. Minigh, 1979; Faure, 1985;
Crispini and Capponi, 1997).

Intermediate ( y) and short (z) axes of sheath folds have
been measured directly in the field, and have also been calcu-
lated from a variety of additional data sources including pho-
tographs, maps and plans representing cross sections through
sheath folds. These yez sections are normal to the long axis
(x) of the sheath, with simple trigonometric calculations being
made to correct for plunging hinges and inclined axial surfaces
where necessary. Closed dome and basin forms generated by
clear refolding associated with Type 1 interference patterns
(Ramsay, 1962) and fabric overprinting are deliberately ex-
cluded from the data set used in this study.

As noted above, yez cross sections through sheath folds are
characterised by ‘‘nested’’ elliptical rings, which represent
a series of surfaces defining sheath geometries positioned
one within another. Although such eye-folds have long been
recognised (e.g. Nicholson, 1963), it is still unclear how (a)
the shape and elliptical ratio (Ryz) of eye-folds may vary and
(b) how the inner parts of the sheath fold eye may vary in re-
lation to the outer-most surfaces. Analysis of these variations
may provide further insights into the mechanisms of deforma-
tion and folding.

In order to systematically investigate the geometry of indi-
vidual sheath folds, the y and z axes forming the outer- (Ryz)
and inner-most (Ry0z0) elliptical ‘‘rings’’ which define the over-
all eye-fold are measured in a plane normal to the length (x) of
the sheath. Total variation in the outer to inner elliptical ratio
(R0) of individual sheaths may then be established by calculat-
ing Ryz/Ry0z0. Inner and outer ellipses of sheath folds can on this
basis be divided into three major categories or classes de-
scribed below.

2.1. Type A or ‘‘analogous-eye-folds’’

Type A or analogous-eye-folds are defined as where the
cross sectional ellipticity of the inner-most ring (Ry0z0) is equiv-
alent to that of the outer-most ring (Ry0z0 ¼ Ryz) such that over-
all ellipticity remains constant. This results in concentric and
self similar elliptical rings which are directly analogous to
one another with R0 ¼ 1 (Fig. 2a).

Sheath folds displaying Type A or analogous-eye-folds have
been frequently recorded in the literature (e.g. Nicholson,
1963; Hansen, 1971; Lacassin and Mattauer, 1985; Malavieille,
1987b; Skjernaa, 1989; Goscombe, 1991; Fletcher and Bartley,
1994) and we have also undertaken our own detailed analysis
and mapping of such eye-folds (Figs. 2ai, aii, 3, and 4). All
of our sections are based on maps of the yez section surface
that is normal to the mineral lineation marking the x-direction
of the sheath fold. Analysis of our case studies reveals broadly
analogous-eye-folds (R0 0.92) associated with only moderate
elliptical ratios (Ryz 3.84) and variations in layer thickness
(Tyz 2.8) (Fig. 2a). The studied folds also display hinge apical
angles (b) of w40 � associated with tight inter-limb angles
(a) of <30 �.

Sheath folds displaying Type A analogous-eye-folds
(R0 ¼ 1) may intuitively be thought to represent the dominant
type of fold, with the geometry of outer layers controlling and
pre-determining that of the inner eye. Indeed, based on obser-
vations in Sweden, Skjernaa (1989, p. 697) suggests that there
is no general trend in the variation of elliptical ratios from
outer to inner layers of sheath folds. Mies (1993, p. 986) notes
that ‘‘similarly proportioned and similarly orientated elliptical
patterns occur in cross section, one nested inside the other’’.
However, our extensive analysis of nested elliptical closures
frequently reveals distinct and consistent differences between
the outer- (Ryz) and inner-most (Ry0z0) elliptical ‘‘rings’’ defin-
ing the overall eye-fold, with most cross sections through
sheath folds displaying marked variations in the outer to inner
elliptical ratios (R0 s 1) which are described below.

2.2. Type B or ‘‘bulls-eye-folds’’

Type B or bulls-eye-folds are defined as where the cross
sectional ellipticity of the inner-most ring (Ry0z0) is less than
that of the outer-most ring (Ry0z0 < Ryz) such that overall ellip-
ticity decreases towards the centre. This results in increasingly
circular rings or ‘‘pupils’’ in the centre of the ‘‘bulls-eye’’ with
R0 > 1 (Fig. 2b).

Numerous examples of sheath folds displaying Type B
or bulls-eye-folds (R0 > 1) are found in the literature (e.g.
Nicholson, 1963; Nicholson and Walton, 1963; Hansen, 1971;
Mattauer et al., 1981; Kelly et al., 2000; Terry and Robinson,
2003) and we have also undertaken detailed mapping of such
eye-folds (Figs. 2bi, bii, 5). Analysis of these case studies re-
veals distinct bulls-eye-folds (R0 1.11) associated with low ellip-
tical ratios (Ryz 2.25) and only limited variation in layer
thickness (Tyz 2.25) (Fig. 2b). A pronounced mineral lineation
(which may intensify into a rodding structure) bisects the sheath
folds and associated eye-folds and is typically parallel to an in-
tersection lineation. The studied folds notably display extremely
tight inter-limb (a) and hinge apical angles (b) of <5 � which
also accentuates the linear character of the rocks.

2.3. Type C or ‘‘cats-eye-folds’’

Type C or cats-eye-folds are defined as where the cross sec-
tional ellipticity of the inner-most ring (Ry0z0) is greater than
that of the outer-most ring (Ry0z0 > Ryz) such that overall ellip-
ticity increases towards the centre. This results in pronounced
elliptical rings in the centre of the ‘‘cats-eye’’ with R0 < 1
(Fig. 2c).

Sheath folds displaying Type C or cats-eye-folds (R0 < 1)
are the most common type recorded within the literature (e.g.
Quinquis et al., 1978; Minigh, 1979; Faure, 1985; Boyle, 1987;
White and Flagler, 1992; Alsop, 1994; Harms et al., 2004).
Analysis of our case studies reveals distinct cats-eye-folds
(R0 0.64) associated with pronounced elliptical ratios (Ryz
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Fig. 2. Schematic diagram illustrating the variation in elliptical ratios (R0) within (a) Type A, Analogous-eye-fold, (b) Type B, Bulls-eye-fold and (c) Type C, Cats-

eye-fold. Down-plunge maps illustrate yez cross sections through each type of eye-fold pattern from Moine and Lewisian rocks in NW Scotland. All coordinates

refer to the UK National Grid. (ai) Map of analogous-eye-fold in a gentle-moderately inclined sheath fold developed in Moine psammites, Sleiteil

(NC6268962929). The individual layers show a moderate variation in thickness (Tyz 3.13) whilst the elliptical ratio (Ryz 3.0) remains identical from the outer rings

towards the centre of the closure (R0 ¼ 1). (aii) Map of broadly analogous-eye-fold developed in Moine psammites at Loch Quoich (NH0147604056). The indi-

vidual layers show a moderate variation in thickness (Tyz 2.4) whilst the elliptical ratio (Ryz 4.7) remains very similar from the outer rings towards the centre of the

closure (R0 ¼ 0.84). (bi) Map of bulls-eye-fold pattern through steep to sub-vertical sheath folds developed in Lewisian orthogneiss, Badcall Bay, (NC14924110).

The individual layers show limited variation in thickness (Tyz 2.08) whilst the elliptical ratio (Ryz 1.94) decreases from the outer rings towards the centre of the

closure (R0 1.06). (bii) Map of bulls-eye-fold in sub-horizontal sheath folds developed in Moine psammite, Creag Ruadh, (NC6969463114). The individual layers

show limited variation in thickness (Tyz 2.4) whilst the elliptical ratio (Ryz 2.6) decreases from the outer rings towards the centre of the closure (R0 1.15). (ci) Map of

cats-eye-fold within Moine psammites at Skullomie (NC6214661843). The individual layers show a marked variation in thickness (Tyz 5.2) whilst the elliptical

ratio (Ryz 6.1) displays a progressive increase from the outer rings towards the centre of the closure (R0 0.76). (cii) Map of cats-eye-fold within Moine psammites SE

of Loch Cormac (NC6329257624). The individual layers show a marked variation in thickness (Tyz 4.42) whilst the elliptical ratio (Ryz 4.13) displays a progressive

increase from the outer rings towards the centre of the closure (R0 0.52).
5.12) and marked variations in layer thickness (Tyz 4.81)
(Fig. 2ci, cii). The studied folds also display hinge apical angles
(b) of w90 � associated with tight inter-limb angles (a) of
<20 �. Thus, these cats-eye-folds are marked by tighter inter-
limb angles than the case study Type A folds, despite the
cats-eye-folds displaying apical angles (b) more than double
that of the analogous-eye-folds!

The observation noted above questions the widely held as-
sumption that progressive inter-limb tightening and associated
axial planar rotation (towards the shear plane) will occur in
tandem with sequential hinge rotation (towards the shear di-
rection). Clearly this view is largely based on the traditional
concept of sheath folds developed during progressive simple
shear deformation (Cobbold and Quinquis, 1980). According
to such models, sheath folds with smaller apical angles (b)
should also display tighter inter-limb angles (a). Our observa-
tions, together with the variable relationships between inter-
limb angles and hinge orientations recorded elsewhere (e.g.
Fossen and Rykkelid, 1990; Fossen and Holst, 1995) suggest
that models of fold hinge rotation and sheath folding should
not be restricted to simple shear deformation but should also
incorporate more general shear and constrictional types of de-
formation. Jiang and Williams (1999) have reviewed the theo-
retical development of sheath folds in different shear zone
settings. They conclude that sheaths are most likely to develop
in association with simple shear, or alternatively in shear zones
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marked by constrictional non-coaxial deformation. We shall
now examine examples of natural sheath folds developed dur-
ing simple shear, general shear and constrictional shear and di-
rectly compare the geometry of resulting eye-folds in terms of
elliptical ratios (Ryz), eye-fold patterns (R0) and thickness var-
iations (Tyz) in each of these major settings. Determination of
bulk strain type is based on our own observations, together
with the original authors description of strain types and fabric
patterns.

3. Sheath folds generated during
simple shear deformation

Over the past three decades progressive simple shear defor-
mation has been invoked by numerous authors as the ‘‘classic’’
model to account for the generation of sheath folds. Within
such a scenario gently curving fold hinges that may either en-
tirely pre-date, or form early in the shearing event are progres-
sively rotated towards the shear direction (Cobbold and
Quinquis, 1980; Ramsay, 1980). Such rotations are a geometric
artifact of intense deformation (g> 10) and may result in an
entirely passive amplification of mildly curvilinear hinge-lines
into sheath folds. In simple shear, the fold amplitude (mea-
sured along Z ) and the length of the hinge-line span (measured
along Y ) remain constant by definition (Cobbold and Quin-
quis, 1980).

3.1. Criteria for distinguishing simple shear deformation
associated with sheath folds

Sheath fold data have been drawn from a host of authors
who describe a combination of features that leads them to in-
dependently suggest that deformation and bulk strain is indeed
dominated by simple shear. These criteria typically include the
presence of intense planar foliations and lineations associated
with SeL tectonic fabrics (e.g. Gaudemer and Tapponier,
1987; Boyle and Dawes, 1991), together with general grain
shape fabrics (e.g. Vollmer, 1988; D’el Rey Silva and Barros
Neto, 2002) and the geometry of pressure shadows around
rigid inclusions (e.g. Quinquis et al., 1978; Salinas-Prieto
et al., 2000). The presence of CeS fabrics is also regarded
as probably reflecting simple shear deformation (e.g. Passchier
and Trouw, 2005, p. 131) and has been recognised by a number
of authors in association with simple shear-generated sheath
folds (e.g. McCourt and Vearncombe, 1987; Searle et al.,
2004). Several authors, in conjunction with other criteria,
also provide strain studies related to sheath folds indicating
plane strain associated with simple shear. These analyses
have been conducted on a variety of markers including accre-
tionary lapilli (e.g. Mukhopadhyay and Matin, 1993), quartz
grains and pebbles (e.g. Malavieille, 1987a,b), and deformed
porphyroblasts (e.g. Goscombe, 1991). Classic sigmoidal
shear zone patterns (e.g. Evans and Neves, 1992), coupled
with large-scale rotation of originally orthogonal bodies (e.g.
dykes and ore feeder zones into sub-parallelism with sheared
margins, Boyle, 1987), have also been used to invoke simple
shear-dominated deformation. The analysis of deformed line-
ation patterns around later sheath folds, coupled with asym-
metric porphyroclasts tails, is also consistent with, and
supports simple shear in some instances (e.g. Srivastava,
2001). Although individually, such criteria and observations
may simply be taken to support non-coaxial deformation,
when taken in combination with the range of features recorded
by authors, they collectively indicate the dominance of simple
shear deformation.

3.2. Analysis of sheath folds generated during
simple shear

Our analysis of sheath folds generated during simple shear
reveals that the vast majority (>99%) display cats-eye-fold
patterns (mean R0 0.692, Table 1). Typical examples of such
cats-eye-folds generated during simple shear deformation are
illustrated in Fig. 3aeh. Asymmetric tear-drop patterns of
some folds (e.g. Fig. 3a, f, g) are considered to reflect the vari-
able orientations of hinge-lines on either side of the eye relat-
ing to fold hinge-line vergence (see Alsop and Holdsworth,
1999, 2004a,b). Sheath folds associated with simple shear typ-
ically display pronounced elliptical ratios (Ryz 5.46, Table 1)
and plot on a distinct trend on graphs displaying yez sheath
axes (Fig. 6a). Inner and outer ellipses plot on slightly differ-
ent trends, with the inner ellipse displaying more pronounced/
extreme elliptical ratios (Ry0z0 6.96, Table 1) reflecting the
overall cats-eye-folding (Fig. 6a, b). Plots comparing the inner
(Ry0z0) and outer (Ryz) elliptical ratios of sheath folds generated
during simple shear also display a distinct pattern on %fre-
quency plots with 98% of inner (Ry0z0) and 93% of outer
(Ryz) elliptical ratios typically greater than 3 also reflecting
cats-eye-folding (R0 < 1) (Fig. 6b, Table 1).
Table 1

Parameters recorded from sheath folds developed during different deformation conditions

Overall sheath

folds (N¼ 1425 from

501 sheaths)

Simple shear sheath

folds (N¼ 380 from

160 sheaths)

General shear sheath

folds (N¼ 362 from

137 sheaths)

Constrictional sheath

folds (N¼ 344 from

124 sheaths)

Tubular sheath

folds (N¼ 203 from

49 sheaths)

Elliptical ratio 4.600 5.464 7.012 2.220 4.065

Mean Ryez 4.181 4.614 5.759 2.421 3.677

Mean Ry0ez0 5.808 6.955 8.795 1.998 4.470

Mean R0 0.854 0.692 0.691 1.234 0.850

Mean Tyz 3.539 3.307 4.347 2.937 3.608
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Fig. 3. Photographs of sheath folds developed during simple shear deformation (coin is 15 mm diameter in each case). Images are viewed directly down-plunge of

the sheath x axes to enable calculation of elliptical ratios (Ryz) and R0. Sheaths showing cats-eye-folds from Moine psammite SE of Loch Cormac displaying (a) (Ryz

4.13) (R0 0.52) (NC6329257624) (see Fig. 2cii), (b) (Ryz 2.73) (R0 0.62) (NC6329257624), (c) (Ryz 5.13) (R0 0.61) (NC6329257624), (d) (Ryz 3.33) (R0 0.53)

(NC6296257836). Photographs of more pronounced cats-eye-folds developed within Moine psammite at Skullomie displaying (e) (Ryz 6.4) (R0 0.828)

(NC6200661578), (f) (Ryz 6.1) (R0 0.76) (NC6214661843) (see Fig. 2ci), together with less-pronounced elliptical ratios at Dalcharn, (g) (Ryz 3.77) (R0 0.45)

(NC6235358570), (h) (Ryz 3.5) (R0 0.47) (NC6235358570).
4. Sheath folds generated during general
shear deformation

General non-coaxial flow, associated with a regional
component of pure shear, has been suggested in the devel-
opment of sheath folds by several authors (Holdsworth
and Roberts, 1984; Patrick, 1988; Menardi-Noguera, 1988;
Tabor and Hudleston, 1991; Stauffer and Lewry, 1993;
Seno et al., 1998; Ghosh et al., 1999; Carosi and Oggiano,
2002) with most authors recognising little or no finite exten-
sion along the intermediate (Y ) axis, i.e. approximately
plane strain (k¼ 1). Yassaghi et al. (2000) note that sheath
folds may be partially dismembered by shear zones which
cut through fold limbs and are marked by an overall general
shear incorporating both non-coaxial and flattening (k< 1)
strains.
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4.1. Criteria for distinguishing general shear
deformation associated with sheath folds

Authors from whom our sheath fold data have been drawn
independently suggest general shear marked by a component
of pure shear flattening based on a number of distinguishing
structures and combination of features. These criteria typically
include the presence of intense planar foliations associated
with S and S> L tectonic fabrics (e.g. Klepeis et al., 1998;
Boettcher and Mosher, 1998), together with the development
of k< 1 strain marked by oblate enclaves, mineral aggregates
and pebble fabrics (e.g. Teyssier et al., 1988; Daigneault et al.,
1990; Tabor and Hudleston, 1991). Opposing senses of shear
on either margin of less deformed augen, coupled with conju-
gate minor shear zones have also been taken as reflecting gen-
eral shear (e.g. Koestler, 1988). Compaction of porphyroblast
wings around adjacent porphyroblasts (e.g. Stauffer and
Lewry, 1993), combined with general flattening of fabrics
around porphyroblasts (e.g. Sengupta and Ghosh, 2004),
have been interpreted as reflecting general shear marked by
additional pure shear components. Whilst some authors find
no evidence for extension along the Y axis of the finite strain
ellipsoid (e.g. Holdsworth and Roberts, 1984; Diez Balda
et al., 1995), others note variable extension along the Y axis
coupled with greater extension along X (e.g. Kusky and Brad-
ley, 1999; Mvondo et al., 2003). These relationships may be
supported by the growth along Y of aligned mineral fibres
(e.g. Faure, 1985; Menardi-Noguera, 1988). Analysis of quartz
c-axis patterns in areas that have undergone simple shear com-
bined with a pure shear component reveals Type 1 crossed gir-
dle c-axis patterns. These (in combination with other criteria)
may be interpreted as reflecting a coaxial component to the de-
formation (Schmid and Casey, 1986) (e.g. Tabor and Hudles-
ton, 1991; Diez Balda et al., 1995; Mvondo et al., 2003).
The analysis of deformed lineation patterns around later
sheath folds, coupled with general flattening around porphyr-
oblasts, is also consistent and supports general shear in some
instances (e.g. Ghosh et al., 1999; Sengupta and Ghosh,
2004). Clearly, an increasing pure shear component within
the general shear will result in progressively more of these fea-
tures being developed. Once again, most authors who have ob-
served sheath folds combine a variety of these criteria when
suggesting a general shear incorporating both simple and
pure shear components.

4.2. Analysis of sheath folds generated during
general shear

Our analysis of sheath folds generated during general shear
reveals that the vast majority (>99%) display cats-eye-fold
patterns (mean R0 0.691, Fig. 6c, d, Table 1). Typical examples
of such cats-eye-folds formed during general shear deforma-
tion are illustrated in Fig. 4aeh. Double-vergence geometries
are developed around some eye-folds (e.g. Fig. 4g) reflecting
opposing sense of hinge rotation on either margin of the eye
(see Alsop and Holdsworth, 2004b). Sheath folds generated
during simple and general shear are, as may be anticipated,
geometrically similar to one another, but with a number of im-
portant differences. Sheath folds generated during general
shear display greater mean elliptical ratios (7.01 compared
to 5.46 with simple shear), higher Ryz (5.76) and Ry0z0 (8.8)
compared to Ryz (4.61) and Ry0z0 (6.96) simple shear sheath
folds (Table 1). The difference in axial ratios of sheath folds
in simple shear and general shear settings are most clearly dis-
played on plots of y and z axes of individual sheath folds
(Fig. 6a, c). Sheath folds generated during general shear plot
on a lower trajectory to simple shear-dominated sheaths
(Fig. 6a, c). This lower trend reflects the increased component
of pure shear across the shear zone. However, the R0 value (R0

0.69) is identical to sheath folds generated during simple shear
sheaths possibly suggesting that R0 reflects original geometri-
cal relationships of pre-cursor periclinal folds (Fig. 6b, d,
Table 1, see below). Sheath folds forming under conditions
of intense simple shear, with or without components of pure
shear, clearly display marked variations in the resultant axial
ratios and elliptical patterns. Plots comparing the inner (Ry0z0)
and outer (Ryz) elliptical ratios of sheath folds generated dur-
ing general shear also display a distinct pattern on %frequency
plots with 98% of inner (Ry0z0) and 97% of outer (Ryz) elliptical
ratios typically greater than 3 (Fig. 6d, Table 1).

5. Sheath folds generated during constrictional
shear deformation

The development of sheath folds in overall constrictional
regimes marked by shortening in both the Y and Z directions
of the finite strain ellipsoid has been suggested and reported
by a number of authors (e.g. Mattauer et al., 1981; Fletcher
and Bartley, 1994; Vassllo and Wilson, 2002; Terry and Rob-
inson, 2003). However, the precise role of constriction remains
uncertain as typically irregular domes and basins developed in
the early stages of constrictional experiments do not evolve
into sheath folds with further progressive shortening (Ghosh
et al., 1995, p. 1367). Constrictional deformation may of
course act upon pre-existing folds resulting in the development
of sheath folds.

Although Hansen (1971) believed outcrop-scale conical
folds in the Trollheimen area of Norway to be dome and basin
structures created by the interference of two separate fold
phases, there is no evidence of fabric superposition and we
therefore reinterpret this superbly detailed work as reflecting
continuous folding during progressive deformation. Indeed,
Hansen (1971, p. 112) does suggest that curvilinear folds
that display similar profiles developed during constrictional
deformation associated with convergent flow patterns.

5.1. Criteria for distinguishing constrictional
deformation associated with sheath folds

Authors from whom our data have been drawn indepen-
dently suggest constrictional deformation associated with the
development of sheath folds based on a number of distinguish-
ing structures and combination of features. These criteria typ-
ically include the presence of L and L> S tectonites and
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Fig. 4. Photographs of sheath folds developed during general shear deformation (lens cap is 60 mm diameter in (a) and (b), coin is 15 mm diameter in (c)e(h)).

Images are viewed directly down-plunge of the sheath x axes to enable calculation of elliptical ratios (Ryz) and R0. Sheaths showing cats-eye-folds from Moine

psammite at Sleiteil displaying (a) (Ryz 5.7) (R0 0.57) (NC6270162957), (b) (Ryz 4.9) (R0 0.64) (NC6270162957), (c) (Ryz 3.0) (R0 1) (NC6268962929) (see

Fig. 2ai), (d) (Ryz 6.8) (R0 0.932) (NC6269762844). (e) Clashnessie Bay Lewisian orthogneiss (Ryz 8.3) (R0 0.66) (NC05753140). Pronounced cats-eye-folds de-

veloped within Moine psammite at Loch Quoich displaying, (f) (Ryz 9.2) (R0 0.68) (NH0147604056), (g) (Ryz 5) (R0 0.58) (NH0147604056), (h) (Ryz 4.7) (R0 0.84)

(NH0147604056) (see Fig. 2aii).
generation of quartz rods (e.g. Chadwick, 1990; Oliver, 1994;
Vassllo and Wilson, 2002), together with the development of
k> 1 strain marked by prolate enclaves, mineral aggregates
and pebble fabrics (e.g. Mattauer et al., 1981; Diez Balda
et al., 1995; Poli and Oliver, 2001; Merschat et al., 2005).
The pronounced linear character of the rocks may also be en-
hanced by the marked alignment of cylindrical fold hinges and
mineral lineations (e.g. Mukhopadhyay and Sengupta, 1979;
Schulmann et al., 1994; Kelly et al., 2000; Beunk and Page,
2001). Shortening along the Y axis of the finite strain ellipsoid,
coupled with greater shortening along Z, has also been re-
corded (e.g. Azcarraga et al., 2002) and has been supported
by the growth of aligned crystal fibres within pressure shadows
(e.g. Cluzel et al., 1991). Constrictional deformation
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associated with sheath folding may result in converging fab-
rics related to variably orientated axial planes (e.g. Veenhof
and Stel, 1991; Terry and Robinson, 2003). It has also been
noted that layer thickness around sheath folds may display
only limited variation and such folds may therefore be gener-
ated by constriction (e.g. Ez, 2000). Most authors employ a va-
riety of these criteria when distinguishing bulk constrictional
deformation associated with sheath folds.
5.2. Analysis of sheath folds generated during
constrictional shear

Our analysis of sheath folds generated during constrictional
shear reveals that the vast majority (>92%) display bulls-
eye-fold patterns (mean R0 1.23, Fig. 6e, f, Table 1). Typical
examples of such bulls-eye-folds formed during constrictional
shear are illustrated in Fig. 5aeh and are marked by pronounced
Fig. 5. Photographs of sheath folds developed during constrictional deformation (coin is 15 mm diameter in each case). Images are viewed directly down-plunge of

the sheath x axes to enable calculation of elliptical ratios (Ryz) and R0. Sheaths displaying bulls-eye-folds from (a) Lewisian orthogneiss at Badcall Bay (Ryz 1.94)

(R0 1.06) (NC14924110) (see Fig. 2bi). Sheaths from Moine psammites with amphibolite at (b) Creag Ruadh (Ryz 2.6) (R0 1.15) (NC6969463114) (see Fig. 2bii).

Sheaths from Moine psammite at Melness displaying (c) (Ryz 4.04) (R0 1.21) (NC58476455), (d) (Ryz 2.4) (R0 1.03) (NC58476455), (e) (Ryz 2.6) (R0 0.86)

(NC58516454), (f) Sleiteil (Ryz 2.2) (R0 1.02) (NC6295362512). Bulls-eye-folds are preserved within Moine psammites at Loch Quoich, (g) (Ryz 2.6) (R0 1.22)

(NH0437901738), (h) (Ryz 2.5) (R0 1.36) (NH0437901738).
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mineral elongation lineations that plunge directly through the
fold closure and bisect the bulls-eye-fold. Sheath folds associ-
ated with constrictional deformation display low elliptical ra-
tios (mean 2.22, Fig. 6f, Table 1) and plot as a distinct trend on
graphs displaying yez sheath axes (Fig. 6e). Plots comparing
the inner (Ry0z0) and outer (Ryz) elliptical ratios of sheath folds
generated during constrictional shear also display a distinct
pattern on %frequency plots with 90% of inner (Ry0z0) and
83% of outer (Ryz) elliptical ratios typically less than 3
(Fig. 6f, Table 1). Very few (2.7%) constrictional sheath folds
exceed elliptical ratios (Ryz) of 4 with <1% of inner bulls-eye
pupils (Ry0z0) exceeding this value compared to >90% in
sheaths formed during simple/general shear.

6. Tubular folds

A distinct class of extreme sheath fold where the hinge-line
bends through more than 160 � and displays xy ratios >1 has
been termed tubular folds (Skjernaa, 1989). Williams and
Zwart (1977, p. 180) had previously recognised that ‘‘tubular
folds can only be explained by relative movement of compo-
nent elements parallel to the tube axis and thus parallel to
the lineation’’. Skjernaa considered tubular folds to develop
from periclinal folds that initiate sub-parallel to the shear di-
rection, rather than sub-normal as is typically assumed for
classic sheath folds. Our analysis and comparison of the tubu-
lar fold data set of Skjernaa (1989) with sheath folds generated
during simple shear reveals a number of similarities. The vast
majority (>99%) of tubular folds display cats-eye-fold pat-
terns marked by slightly lower elliptical ratios (mean Ryz

4.07) but greater R0 values (R0 0.850) than simple shear sheath
folds (Table 1). Tubular folds do not appear to define a distinct
‘‘field’’ or ‘‘trend’’ on plots and most clearly overlap with
sheath folds generated during simple shear (Fig. 6g).

7. Geometric comparison of sheath folds generated in
different strain settings

The y and z axes of individual sheath folds generated during
simple shear, general shear and constrictional deformation are
directly compared in Fig. 6g. These graphs show that sheath
folds generated during constriction plot on a quite different
trend to those formed during simple and general shear, reflect-
ing the lower elliptical ratios of sheaths created during con-
striction. This relationship is also clearly illustrated on
%frequency plots of overall yez ratios of sheath folds with
94% of simple shear-generated sheaths and 98% of general
shear sheaths displaying Ryz> 3, whilst conversely, 86% of
sheaths formed in constrictional shear display Ryz< 3
(Fig. 6h).

Variations in outer (Ryz) and inner (Ry0z0) elliptical ratios re-
sulting in Type A (R0 ¼ 1) analogous-eye-folds, Type B
(R0 > 1) bulls-eye-folds, and Type C (R0 < 1) cats-eye-folds
may be compared on an eye-chart (Fig. 7). The inner (Ry0z0)
and outer (Ryz) elliptical ratios of individual sheath folds gen-
erated during simple shear, general shear or constrictional de-
formation may thus be directly plotted and display distinct
trends on such eye-charts (Fig. 8a). Simple shear and general
shear sheaths (together with tubular folds) clearly overlap with
one another resulting in almost identical mean trend lines
across a wide range of elliptical ratios (Fig. 8a). Sheath folds
formed during constriction, however, display a markedly dif-
ferent trend associated with lower elliptical ratios and reflect-
ing bulls-eye-folds (Fig. 8a).

The variation in overall aspect ratios from outer to inner
rings is defined as R0 (where R0 ¼ Ryz/Ry0z0) and this value
may be directly compared with the elliptical ratios of the in-
ner-most ellipses of individual sheaths (Fig. 8b). This plot il-
lustrates that during both simple shear and general shear,
there is no significant variation in R0 when the inner-most
(Ry0z0) aspect ratios >6. However, where aspect ratios are
<6, then a progressive increase in R0 is recorded as the Ry0z0

values decrease (Figs 8b). This reflects an overall increasing
self-similarity between inner and outer ellipses with lower el-
liptical ratios. The R0 values of sheath folds generated during
simple shear and general shear show very similar %frequency
profiles, with identical mean values of R0 0.69. This suggests
that R0 cats-eye-folds are not controlled by the amount of de-
formation or an increasing pure shear component in general
shear.

Sheath folds generated during constrictional deformation
typically display R0 > 1 reflecting Type B or bulls-eye-folds
that may be directly compared with the elliptical ratios of
the inner-most ellipses of individual sheaths (Fig. 8b). The
most pronounced bulls-eye-folds are displayed by sheaths
with moderate outer elliptical ratios (Ryz 2e3) and sub-circular
inner-eyes or pupils (Ry0z0 1e2) (Fig. 8b). Thus, sheaths devel-
oped during constriction display markedly lower elliptical ra-
tios (96% of sheaths display Ryz< 3.9) but greater R0 values

Fig. 7. Summary eye-chart illustrating variations in outer (Ryz) and inner (Ry0z0)

elliptical ratios resulting in Type A (R0 ¼ 1), analogous-eye-folds, Type B

(R0 > 1), bulls-eye-folds, and Type C (R0 < 1), cats-eye-folds. Schematic

sheath folds generated from the initial fold structure at the origin are shown

for each scenario. See text for further discussion.
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than those generated during simple/general shear (95% of
sheaths display Ryz> 3).

The thickness of individual marker layers within eye-folds
may be measured along the y axis (parallel to the axial sur-
face) (ty) and at 90 � to this along the z axis (tz) to define the
ratio of Tyz (Fig. 1). Measurements of ty and tz for individual
layers may then be directly compared (Fig. 8c). Layering
within sheath folds generated during simple shear and gen-
eral shear display higher ratios between ty and tz and plot
on a flatter trajectory than sheaths generated during constric-
tion. Constrictional eye-folds display less variation between
ty and tz for any individual layer thus reflecting more equant
layer thickness around the fold. Sheath folds generated
within simple shear and general shear typically display
Tyz< 4 with means of Tyz 3.31 and Tyz 4.35, respectively
(Table 1). Elliptical ratios do not display a strong direct cor-
relation with Tyz, although Ryz< 4 tend to be associated with
less variation in layer thickness (Tyz< 3). Sheath folds gener-
ated during constriction display lower Tyz values with a mean
of Tyz 2.94 (Table 1). Constrictional sheaths displaying
Tyz> 4 also show a slight tendency towards greater elliptical
ratios (Ryz> 3).

Marker layers may also be described as a proportion of the
overall sheath y axis ( y0/y) and z axis (z0/z) (Fig. 8d). This has
the advantage that the normalised ratio is independent of scale
and therefore more clearly reflects the sequential variation in
layer shape with progressive changes in elliptical ratios to-
wards the centre of the sheath. For sheath folds created during
simple shear and general shear, y0/y values are greater than z0/z
whilst the converse is true for constrictional sheaths (Fig. 8d).
This relationship simply records the predominance of cats-eye
and bulls-eye-fold geometries in each of these settings, respec-
tively. Subtracting the y0/y ratio from the z0/z ratio for each
sheath fold provides a single value (R0zeR0y) which reflects
the relative change in length of y and z axes. Sheaths created
during simple shear and general shear display normal distribu-
tion patterns which broadly coincide with one another peaking
at values of �0.1 whilst sheaths generated during constriction
display þve values (Fig. 8e). Constrictional sheaths with the
highest (R0zeR0y) ratios typically correspond to those with
the greatest R0 values (Fig. 8f) reflecting more pronounced
bulls-eye-folds. The converse is true of sheath folds generated
during simple/general shear where the most negative (R0zeR0y)
ratios are associated with the lowest R0 values and most pro-
nounced cats-eye-fold patterns (Fig. 8f). These various plots
of individual folds clearly distinguish layer thickness changes
associated with cats-eye and bull-eye-folds and may be used
to differentiate folds formed during constriction and simple/
general shear.

8. Quantitative strain data and sheath folds

Strain analysis associated with computer simulation of
sheath folds has been undertaken by Vollmer (1988) who as-
sumed simple shear deformation, and Seno et al. (1998) who
invoke a general shear. Such a combination of simultaneous
pure and simple shear resulted in the generation of curvilinear
sheath folds at much lower values of shear strain (g¼ 2) than
modelled for simple shear alone (g> 5: Cobbold and Quin-
quis, 1980). Prolate finite strains associated with apparent con-
striction are recorded in the noses of km-scale sheath folds
whilst the limbs are marked by oblate strain and apparent flat-
tening (Seno et al., 1998, figs. 1 and 3). Although this pattern
was interpreted by Seno et al. (1998) as a later phase of defor-
mation, the broad variation is in agreement with c-axis fabric
measurement recorded around minor sheath folds by Crispini
and Capponi (1997) in which oblate strains on the limbs give
way to plane and prolate strains on the nose and hinges of the
sheath, respectively.

Quantitative strain data in rocks affected by sheath folding
has been collected in a number of deformation regimes
broadly interpreted as being dominated by simple shear (e.g.
Malavieille, 1987b; Goscombe, 1991; Mukhopadhyay and
Matin, 1993), general shear (e.g. Lacassin, 1983; Faure,
1985; Menardi-Noguera, 1988; Teyssier et al., 1988;
Daigneault et al., 1990; Tabor and Hudleston, 1991; Stauffer
and Lewry, 1993; Diez Balda et al., 1995; Yassaghi et al.,
2000), or constrictional deformation (e.g. Mattauer et al.,
1981; Veenhof and Stel, 1991; Poli and Oliver, 2001; Beunk
and Page, 2001; Vassllo and Wilson, 2002; Terry and Robin-
son, 2003; Merschat et al., 2005). Within simple shear-domi-
nated examples, the calculated mean k value is close to 1
(k¼ 1.22) whilst associated sheath folds display mean ellipti-
cal ratios (Ryz) of 4.5, 7.3, Tyz 2.68 and R0 ¼ 0.67 (Fig. 8g, h).
Within general shear, the addition of a pure shear flattening
component results in a lower mean k value (k¼ 0.67), greater
aspect ratios of Ryz 6.9, Ry0z0 11.2 and Tyz 4.68, but the associ-
ated sheath folds still display R0 ¼ 0.65 similar to that of
sheaths within simple shear (Fig. 8g, h). Sheath folds devel-
oped in regimes where flattening is more pronounced and
k< 0.75 display greater Tyz values (Tyz 5.213) compared to
where k> 0.75 (Tyz 4.03). These relationships are further sup-
ported by the overall data sets of simple shear (N¼ 380) and
general shear (N¼ 362) which provide identical mean R0

values to one another. Thus, whilst the additional component
of pure shear results in greater Tyz and Ryz aspect ratios, it
does not appear to significantly alter the R0 value.

This correlation is also demonstrated by sheath folds
generated within constrictional deformation where sheaths as-
sociated with k values in the range of k¼ 3 to k¼ 6 (mean
k¼ 3.86, mean Tyz¼ 2.625) display R0 ¼ 1.223, whilst sheaths
associated with k values in the range of k¼ 9 to k¼ 12 (mean
k¼ 10.09, mean Tyz¼ 2.39) display an identical mean
R0 ¼ 1.223 (Fig. 8h). Thus, the increasing component of con-
strictional strain does not therefore appear to significantly alter
the R0 value, although the Ryz aspect ratio and Tyz value show
an overall decrease with increasing k values from general
shear to simple shear to constriction.

In a detailed case study, Mattauer et al. (1981) suggest that
while simple shear may predominate, the finite strain ellipsoid
lies within the constrictional field close to plane strain
(k¼ 3.6). Our analysis of associated outcrop-scale sheath folds
reveals low elliptical ratios (mean Ryz 1.8) and overall bulls-
eye-fold patterns (mean R0 ¼ 1.37). Fletcher and Bartley
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(1994) suggest that while non-coaxial shear may be associated
with plane strain (k¼ 1.1) at the grain scale, a significant com-
ponent of constriction is associated with the development of
transport-parallel folds. Our analysis of these sheath folds re-
veals calculated Ryz 3.44, and overall R0 1.006 bulls-eye-fold
patterns. Constrictional deformation associated with an overall
transtensional regime has also been invoked by Terry and
Robinson (2003) in the development of minor sheath folds
in Norway. Detailed plane table mapping of these folds by
Terry and Robinson (2003) reveals low ratios (Ryz 1.67)
once again associated with predominantly bulls-eye (R0 1.15)
folding.

9. Discussion e what controls sheath fold geometry?

The final elliptical ratio (Ryz), thickness variation (Tyz) and
R0 value of any sheath fold may in part reflect a number of var-
iables. The principal controls include (a) the type (k value) and
magnitude of deformation; (b) the orientation and geometry of
pre-cursor folding relative to subsequent shearing. These ma-
jor controls will now be discussed together with the effects of
reworking by subsequent deformation.

9.1. Variable types of deformation

As noted in the previous sections, one of the principal con-
trols on the geometry of sheath folds appears to relate to the
type of deformation. Sengupta and Ghosh (2004) record
sheath folds associated with transpressional shearing in which
the bulk deformation is of the flattening (or plane strain) type
with the rate of stretching greater along the transport direction
than the Y axis. This scenario has also been suggested as being
capable of encouraging sheath fold development by Jiang and
Williams (1999). Typical elliptical ratios calculated in this set-
ting are equivalent to those observed elsewhere (Ryz 3.5, Ry0z0

4.6 and R0 0.781) and similar to the overall calculated means
for sheath folds generated during simple shear.

Within cats-eye-folds, inner ellipses become more pro-
nounced when the outer ratios exceed 3, possibly reflecting in-
ner-arc pinching during buckling of the pre-cursor folds. Cross
sections through folds within high-strain zones are consistent
with original buckle folds being modified during subsequent
shear (Platt, 1983; Ghosh and Sengupta, 1984, 1987; Ghosh,
1993; Carreras et al., 2005). Folds that initiate with parallel ge-
ometries may during subsequent rotation approach similar fold
geometries (see Carreras et al., 2005) with many sheath folds
displaying similar profiles in XeZ section (Quinquis et al.,
1978). Puelles et al. (2005) note that sheath folds generated
during simple shear display thickened hinges and thinned
limbs in both yez and xez sections. Simple shear acting on
the pre-cursor buckle fold will not only significantly increase
the curvilinearity of the fold hinge on any surface (see Ram-
say, 1980), but also the thickness of layers measured along
the fold axial plane. Layers in the pre-cursor fold displaying
the greatest curvilinearity and hinge-thickening will thus un-
dergo the most significant modifications during passive ampli-
fication. This suggests that the inner-most layer is more
deformed (as originally recorded by Quinquis et al., 1978)
and possibly reflects the nucleation and enhanced development
of the core of the pre-cursor fold.

Bulls-eye-folds are typically produced where the outer ellip-
tical ratio Ryz is <3, with the inner ellipse becoming even less
pronounced (�2) and displaying a more circular cross section
(Figs. 5, 8a, 9). Sheath folds displaying circular Ryz cross sec-
tions may be generated during constrictional deformation in
which the pre-cursor fold is shortened in both the Y and Z direc-
tions (e.g. Ez, 2000). Such circular sections typically display
the R0 > 1 variation from outer to inner rings demonstrated
by bulls-eye-folds and so may represent one of the primary
mechanism for the generation of such folds. Intense constric-
tional deformation may eventually result in the intermediate

Fig. 9. Summary diagram illustrating the geometry of cats-eye and bulls-eye-

folds associated with sheaths generated during (a) simple shear, (b) general

shear and (c) constrictional shear. The geometry of the initial fold is shown

(above) in each case, together with the geometry of deformed sheath folds re-

sulting in tongue and test-tube forms with simple/general shear and constric-

tion, respectively. The variation in typical measured parameters (R0), elliptical

ratios (Ryz), and thickness ratios (Tyz) is also given. See text for further

discussion.
generated under different strain types illustrating R0zeR0y (where R0z and R0y are the lengths of inner z and y axes calculated as proportions of the outer y and z axes,

respectively). (f) R0zeR0y (where R0z and R0y are the lengths of inner z and y axes calculated as proportions of the outer y and z axes, respectively) plotted against R0

ratios. (g) Plots comparing k values with the elliptical ratios of inner (dark symbol) and outer (light symbol) elliptical ratios of sheath folds. Larger symbols rep-

resent calculated means for each data set comprising simple shear (N¼ 10), general shear (N¼ 14) and constrictional shear (N¼ 21). The R0 values of sheath folds

may be compared with the calculated k value for different strain types (h). This plot suggests that the R0 value does not increase significantly with increasing k

values from general shear to simple shear. Similarly, increasing k values associated with constrictional deformation do not alter the mean R0 value of constrictional

sheath folds. See text for discussion.



1602 G.I. Alsop, R.E. Holdsworth / Journal of Structural Geology 28 (2006) 1588e1606
( y) and short (z) axes of the inner-most ellipse switching posi-
tion relative to y and z of the outer ellipse i.e. the intermediate
axis of Ry0z0 is aligned with the short axis of Ryz. This is a conse-
quence of Ry0z0 possessing a lower elliptical ratio, which with in-
creasing constriction and shortening, eventually results in y
displaying a smaller value than z (e.g. Terry and Robinson,
2003). Such flipping in orientation of y and z axes in adjacent
sheaths and even from the outer to inner ellipses of individual
sheath folds is an indication of constrictional deformation.

It is important to note that sheaths displaying bulls-eye-
folds may occasionally be found in proximity to neighbouring
sheaths that show overall cats-eye geometries. This association
may suggest localised strain partitioning into simple shear,
general shear and constrictional-dominated domains, possibly
due to the effects of differential shearing associated with flow
perturbation development during general shear (e.g. Coward
and Potts, 1983; Alsop and Holdsworth, 1993, 2002, 2005,
in press; Alsop et al., 1996; Holdsworth et al., 2001). It
may, however, also reflect additional controls on sheath fold
patterns such as the geometry and orientation of original folds
discussed below.

9.2. Variable orientation and geometry of
pre-cursor folds

Lacassin and Mattauer (1985), Skjernaa (1989) and Mies
(1993) have calculated via mathematical modelling of sheath
folds within simple shear regimes that elliptical ratios (Ryz)
are dependent on both the amount of (simple shear) deformation
together with the geometry and orientation of the initial pericli-
nal fold relative to subsequent shear. Mies (1993, p. 990) models
a range of initial periclinal geometries orientated either parallel
or normal to subsequent simple shear and clearly illustrates in-
creasing Ryz values with increasing shear strains (g). In addition,
a relative decrease in the apical angle (b) compared to the inter-
limb angle (a) of the original pericline results in greater Ryz

values for any given value of g, i.e. periclines displaying greater
original hinge-line curvature will naturally create greater ellip-
tical ratios (Ryz) for any subsequent deformation.

For the typical situation of periclines developed approxi-
mately normal to shearing, the ratio between inner and outer el-
lipses (R0) remains constant during increasing simple shear
deformation and reflects the original periclinal geometry. Con-
versely, original periclines orientated sub-parallel to the subse-
quent shear direction will display variable R0 with increasing
simple shear. Although bulls-eye-folds (R0 > 1) may be devel-
oped at relatively low values of g, the Ryz values rapidly increase
with greater shear stain values (g> 8). This relationship clearly
distinguishes such simple shear-generated folds from those
formed during constrictional deformation in which bulls-eye-
folds are marked by extremely low Ryz values (mean Ryz 2.25).
Thus, for any given pericline typically orientated normal to sub-
sequent shearing, elliptical ratios (Ryz) will increase during in-
creased simple shear deformation whilst R0 remains constant.
This study suggests that Ryz elliptical ratios may also be in-
creased (whilst keeping R0 constant) by increasing the pure shear
component within a general shear framework.
Tubular sheath folds have been mathematically modelled
by Skjernaa (1989) and Mies (1993) who both consider these
intense folds to be the product of a gently-curvilinear pre-
cursor fold trending parallel to the later non-coaxial shear di-
rection (see Skjernaa, 1989; Mies, 1993 for details). Skjernaa
(1989, p. 695) did, however, suggest that ‘‘a longitudinal short-
ening may lead to the formation of transverse folds’’. Ez
(2000, p. 170) claims that the flow-parallel orientation of orig-
inal fold orientations is a coincidence that ‘‘can not be a rule’’
and that such folds were probably produced by constriction.
(cf. Skjernaa, 1989; Mies, 1993). Our analysis of cross sec-
tions through tubular folds reveals that they predominantly
display R0 < 1 cats-eye-fold patterns and characteristics of
sheath folds generated during simple shear deformation. Con-
versely, mildly curvilinear pre-cursor folds trending at high
angles to subsequent non-coaxial shear generate markedly cur-
vilinear sheath folds with more pronounced Ryz ellipticity
(Skjernaa, 1989; Mies, 1993). Cross sections through such
structures consistently display R0 < 1 cats-eye-folds.

It has long been recognised that mildly curvilinear periclinal
folds display marked variations in style along the length of their
fold hinge (Dubey and Cobbold, 1977). Tracing hinge-lines of
individual periclines reveals increasingly angular profiles, nar-
rower hinge zones and reduced inter-limb angles towards the
culmination. These original variations in periclinal geometry
may be amplified during subsequent shearing resulting in a com-
plex range of possible sheath scenarios (e.g. see Skjernaa, 1989).

Thus, our observations, coupled with the modelling studies
of Skjernaa (1989) and Mies (1993), suggest that one of the
contributing factors in the development of bulls-eye and
cats-eye-folds may be the orientation of the pre-cursor fold
relative to the later shearing.

9.3. Variable reworking of sheath folds

Sheath folds are resilient to subsequent deformation and as
such may provide a more reliable record of deformation than
grain fabrics that may be readily overprinted and destroyed.
Reworking of shear zone fabrics may, however, result in
sheath folds themselves being refolded during continued pro-
gressive deformation or by entirely separate events (e.g. Hen-
derson, 1981; Ghosh and Sengupta, 1984; Holdsworth, 1990;
Alsop, 1992, 1994; Forbes et al., 2004). Such 3-D refold struc-
tures have been studied by a number of authors in terms of the-
ory (e.g. Grasemann et al., 2004 and references therein) and
general field analysis (e.g. Fowler and El Kalioubi, 2002).
These authors suggest that the ellipticity of sheath cross sec-
tions (Ryz) controls the subsequent refold patterns. Shortening
along the y axis of sheath folds with large Ryz encourages
buckling of the axial plane and type-2 refolding, whilst sheaths
with low Ryz are marked by Type 1 refolding style where the
elliptical cross section becomes shortened resulting in an
even lower Ryz. Major sheath folds (w30 km y axes) associ-
ated with prolate strains and constrictional deformation are re-
corded by Vassllo and Wilson (2002). Although such
structures typically define small elliptical ratios (Ryz 2.22) as-
sociated with pronounced bulls-eye-folds (R0 1.3), sheaths
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displaying variable cats-eye-fold patterns are locally preserved
in areas that suffered significant later flattening strains (Vassllo
and Wilson, 2002). These relationships suggest a modification
of originally low Ryz ellipses associated with constrictional de-
formation by subsequent flattening strains to produce cats-eye-
folds in these reworked areas. The analysis of sheath folds in
areas or reworking clearly requires care, although such areas
may be readily identified via overprinting fabrics and refold
geometries.

9.4. Constraints of sheath folds

It has been noted that the development of sheath folds in
zones of general shear is considered to be critically dependent
on the direction of maximum stretching of the pure shear com-
ponent compared to the direction of simple shear (Jiang and
Williams, 1999). Sheath folds may be encouraged within gen-
eral shear zones where these two directions coincide. However,
if the stretching directions of the pure shear component and
simple shear are at high angles to one another then the devel-
opment of sheath folds may be impeded (Jiang and Williams,
1999). In such a scenario, folds may become more cylindrical
as they rotate, with stretching parallel to hinges actually en-
hancing their linearity (Culshaw, 2005). Sheath folds may be
considered most useful as discriminators of bulk strain where
k values are close to, or greater than 1. Sheath folds are less
likely to develop where the bulk strain falls well within the ob-
late (k< 1) field and as such they may be of more limited value
in these settings. The notable absence of sheaths and associated
eye-folds in some high-strain zones, despite evidence for hinge
rotation (e.g. Mawer and Williams, 1991; Culshaw, 2005), may
thus inadvertently help discriminate such (k< 1) strain.

9.5. Summary

Thus, the final geometry of sheath folds may in part reflect
(a) the amount and type (k value) of deformation, (b) the ori-
entation and geometry of pre-cursor folds and (c) reworking of
original sheath geometries. However, our results show that
98% of sheath folds generated during simple shear and general
shear display (R0 < 1) cats-eye-fold patterns whilst >92% of
sheath folds generated during constriction display (R0 > 1)
bulls-eye-folds. In addition, 98% of sheath folds formed dur-
ing simple shear and general shear display inner-most ellipti-
cal ratios (Ry0z0) >3, whilst the converse is true in sheath folds
generated during constriction where 90% display inner-most
elliptical ratios (Ry0z0) <3 (Fig. 9). This close correlation of el-
liptical ratios (Ryz), Tyz values, and cats-eye or bulls-eye (R0)
fold patterns with simple shear, general shear or constrictional
deformation very clearly suggests that the primary control on
the geometry of sheath folds is the nature of the deformation
regime itself (i.e. control (a)).

10. Conclusions

Sheath folds have now been carefully documented by a host
of authors. Analysis of this published work, together with our
own observations, allows us to make some general remarks
and draw some conclusions about sheath fold geometries
and deformation. This study demonstrates that:

(a) Folds in general, and sheath folds in particular, provide
a more complete record of the deformation history than
fabrics that are more readily transposed and ‘‘reset’’.
Eye-folds, representing yez cross sections across sheaths,
are not easily destroyed and may provide a more reliable
indicator of bulk strain type than some traditional tech-
niques that may be subject to problems of matrix-clast vis-
cosity contrasts etc.

(b) A new descriptive framework has been established which
allows eye-folds to be defined according to the elliptical
( yez) ratios of the outer- (Ryz) to the inner-most (Ry0z0) el-
liptical rings and displayed on eye-charts. Eye-folds asso-
ciated with individual sheaths may thus be categorised by
the R0 value (where R0 ¼ Ryz/Ry0z0) into Type A or analo-
gous-eye-folds (R0 ¼ 1), Type B or bulls-eye-folds
(R0 > 1) and Type C or cats-eye-folds (R0 < 1).

(c) Sheath folds may contain greater elliptical ratios within the
inner eye-shaped cross sections to define cats-eye-folds
(R0 < 1). Such patterns are consistently (>99%) associated
with simple shear and general shear-dominated deformation.

(d) Sheath folds may contain lower elliptical ratios within the
inner eye-shaped cross sections to define bulls-eye-folds
(R0 > 1). Such patterns are consistently (>90%) associated
with constrictional deformation.

(e) More pronounced (Ryz) elliptical ratios are typically asso-
ciated with sheath folds generated during general shear, al-
though increasing shear strain (g) and curvilinearity of the
original periclinal fold hinge will also obviously increase
Ryz during simple shear (Mies, 1993). If the relative com-
ponent of pure shear (and therefore type of deformation) is
uncertain, then ellipticity of eye-folds should not be used
in isolation to determine shear strain (g) (Lacassin and
Mattauer, 1985).

(f) The ratio of layer thickness measured from sheath limbs to
hinges (Tyz) displays a progressive increase from sheaths
developed during constriction (Tyz 2.94), simple shear
(Tyz 3.31) and general shear (Tyz 4.35) deformation.

(g) The correlation noted above between eye-fold patterns
(R0), elliptical ratios (Ryz), and variations in layer thick-
ness (Tyz) with the overall bulk strain regime in which
the folds developed suggests that the type of deformation
is the principal control governing the geometry of sheath
folds. Although additional factors, such as pre-cursor
folds locally originating parallel to subsequent shearing,
may theoretically influence the geometry of resulting
sheath folds, the overall correlation (>95%) of R0 with
strain type suggests that such influences are limited.
These empirical relationships may thus allow sheath folds
to act as both effective and robust discriminators of strain
type.

(h) Future work will compare the data from sheath folds de-
veloped within metamorphic rocks with those formed in
other deformational environments where intense ductile
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shearing can occur, such as slumps, sub-glacial deforma-
tion zones, salt and magma flows.
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